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ABSTRACT 

Various  ways to  improve  the  numerical  accuracy of solutions t o  balanced forecast equations  are discussed and 
compared.  Among  these,  the most efficient method seem  to  be a  correction  operator  technique  with  an  associated 
space-truncation error of fourth order  in As. Results from a  number of real data short-range  forecasts  with  this 
method  are also presented  and discussed. 

1. INTRODUCTION 

In balanced models for  routine numerical weather 
prediction, commonly used values for the horizontal grid 
dist'ance and  the  time  step  are As =300400 km, At"0.5-1 
hr.  With this choice, the numerical errors are  dominated 
by  the space-truncation  error, defined as  the At-in- 
dependent part of the  total  truncation  error.  (The  re- 
maining part is called the time-truncation  error.) Its 
influence on  the solution  is of ten noticeable in 24-hr 
forecasts  and may be considerable for extended forecast 
ranges. 

As a simple example, the  Rossby wave solution 
+=-Uy+1C/'eik(z-c2) to  the finite-difference form of the 
divergent  barotropic  vorticity  equation 

a 
- (W")="(+, W+f> at (1) 

with  the 5-point approximations 

1 
m&+ij= a s 2  (1C/$+lj+$i-1 ~+J .~ i+ l++ i i - -1"4+i j )  (2) 

J w ( %  P)<j=J++(a, P ) i j = i  (%+r -~ t - l j ) (P* ,+ l  4As l (  

- ~ i j - ~ ) - ( ~ ~ j + , - ~ ~ j - , ) ( P i + l ~ -  t - l j  
)> 

(3) 
to  the Laplace  and  Jacobi  operators, moves with  a phase 
speed 

C=6---" k2YU-P 
k2r+ P 

where 

Y= 
 COS klAs)+2(1-~0~ k2As) 

(kAs) 1 

6= k,As sin k,As +k2As sin kzAs 
(kA5) 1 

kl=k cos cp, kz=k  sin cp, and cp is the angle between the 
x-axis and the i-direction. This speed may  be much less 
than  its correct  value, given by 

k'l7-P c=-. 
k2+ P 

For a  grid oriented along the x- and y-axes, assuming 
A~=300 km, u=18 m sec-l, p=0.8.10-12 m-2, P=1.62 

.lo-" m-l sec-l, the error  is 10 percent for a  vavelength 
X=2n/k of 2600 k m ,  15  percent for X=2000 km,  and 20 
percent for X=1800 km (see fig. 1-3). The time  truncation 
error is here neglected. 

For  other  orientations of the grid the phase-speed errors 
are  smaller, reaching a minimum (about half of the maxi- 
mum  value) when the grid is at a 45" angle to the s-y axes. 

This directional dependence of the error causes a 
spurious  distortion of the solution pattern,  in  addition to  
the  reduction of the phase speeds. To avoid this  type of 
error,  slightly more complicated finite-difference approxi- 
mations to the Laplace  and  Jacobi  operators have  to  be 
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FIGURE 1.-Phase speed  for  a  Rossby-wave  solution to  the diver- 
gent  barotropic  vorticity  equation.  Dotted line is for the  exact 
equation,  solid  line  for  the  second-order  approximation,  and 
dashed  line  for the new fourth-order  method. As=300 km, 
U= 18m sec-1, q=O.8. 10-12  m--2, B= 1.62.10-11 m-1  sec-1. 
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FIGURE 2.-Relative  phase-speed  error for the second-order method 
(solid  line) and for the new fourth-order  method (dashed  line). 

used. Of all possible expressions of the values at  the point 
(i, j )  and  the eight adjoining points, the Laplacian  with 
minimum orientat,ional  truncation error is (Miyakoda, 1960) 
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FIGURE 3.-Time for  obtaining a phase  error of 180'. Solid  line 
shows  values  for the usual  second-order method, dashed  line 
values for the new method. 

The corresponding Jacobian is not  uniquely defined, and  any member of the one-parameter  set 

may be used. Although there is no restriction on the value 
of a, the cases a=O, 1, or 2 are of main  interest. For a=l 
we have  the  symmetric  conservative  Jacobian proposed 
by Arakawa (1966) to  guarantee  computational  stability. 
(This  property  has been  confirmed by  Sundstrom, 1969.) 

The approximate independence of the grid orientation 
follows from the  Taylor series expansions 

Unfortunately,  the maximum phase-speed error  still 
remains the same. On the average, the phase-speed error 
may  thus  actually increase, and it is mainly  in  combination 
with one of the following error-reducing methods that  the 
orientation-independent  operators are of importance. 

9 .  POSSIBLE  WAYS  TO  IMPROVE 
THE  NUMERICAL  ACCURACY OF 

THE  FINITE-DIFFERENCE  APPROXIMATIONS 
1) The simplest way  to diminish the  truncation  errors 

is of course simply refining the grid, which should obviously 
be done in such a  way that  the  total computation  time  is 
kept as small as possible. Since we cannot a priori tell 
whether As and At should both  be reduced, we must  first 
seek for the choice giving the smallest possible total 
truncation  error (E)  within  a given total computation  time 
(T), or alternatively,  the smallest T for  a given error E. 
If the leap-frog method  is used for the time differencing, E 
is of second order in As and At while T is  approximately 
proportional to  the  number of time  steps (T/At) , the  num- 
ber of grid points  in the horizontal (S/As2), and the  number 
of iterations used for  inverting  the Helmholz operator a t  
each time  step. For the extrapolated  Liebmann  method, 
the optimal choice of As and At is then the one making the 
space truncation  error  three times as  large  as the time 
truncation  error (if the choice is not in conflict with the 
stability  conditions). The proof is found in the Appendix 
(Case 1). It is also shown there that  the minimum compu- 
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tation  time  is  proportional  to E-2-to reduce the error by 
a  factor of two, the computation  time increases by a  factor 
of four. For the Alternating-Direction  Implicit  (ADI) 
method the relation  is slightly more  favorable  and T is 
nearly  proportional to  Anyhow, refining the grid is 
only possible if the memory capacity of the computer  is 
abundant, since the utilized capacity increases as E-1. 

2) If the  computation  is  made  with two different grid 
distances, one may  extrapolate  the  results to zero grid 
distance (the Richardson-extrapolation technique, see 
Bulirsch and  Stoer, 1966). T o  facilitate  the  programming, 
the larger grid distance (As") is usually chosen as  a multiple 
of the smaller one (As'). The  most favorable case is 
As"=2Asr,  At"=2At'. The minimum total computation 
time  is  then  proportional to  E-l, if the extrapolated Lieb- 
mann  method  is used, and nearly to  for the  AD1 
method (see the Appendix, Case 2). In spite of these 
favorable  results,' the method  is  presently of limited 
interest. The asymptotic  error  formula  is  not valid for 
kAs larger than  about 1.5, giving an upper bound for As 
around 400 k m .  With Asr=200 k m ,  As"=400 k m ,  the 
computation  time is five times  as  large  as  for the conven- 
tional scheme with As=300 km,  and the gain in accuracy 
hardly justifies such an increase. 

3) The two remaining methods  are based on approxi- 
mations  with  a local. space  truncation  error of fourth 
order  in As (but where the usual leap-frog scheme is used 
for the time differencing). 

a)  The easiest way to obtain such a scheme is inserting 
fourth-order  approximations  to the Laplace  and  Jacobi 
operators  in the forecast equation.  These finite-difference 
operators must use values a t  points  outside the central 
9-point set  and  may  be constructed from the previously 
given 5- or 9-point  formulae  as 

4 1 
V,"+i,= -V(AS)+~,- 3V2(2As)+ij 3 (8) 

J*(% P ) i j =  3 J(As)(a, 01ij- ,J(2As)(0r1 P>,j. (9) 

and 
4 1 

Schemes of this  type  have been thoroughly  tested by 
Miyakoda (1960, 1962), showing that they accomplish the 
desired error  reduction  as  long  as the  shortest  wavelength 
exceeds 4As.  As shown in  the Appendix (Case 3),  the  total 
computation  time  is  proportional  to  with  the  opti- 
mum choice of  As and At, provided that  the number of 
iterations used for inverting the Helmholz operator  with 
the extrapolated  Liebmann  method  is  proportional to As-l. 
This is, however, not  strictly  true, and the computation 
time may therefore increase  more  rapidly.  Futhermore, 
solution values must  be prescribed both a t  the  boundary 
and a t  grid points just outside it, which may cause stability 
problems. To avoid these difficulties, Miyakoda  investi- 
gated  a scheme with  a  fourth-order  Jacobian but with  a 
conventional Laplace  operator  and  found that it gave  a 
noticeable  improvement of the phase-speed errors;  such  a 
simplified scheme was introduced  in the  barotropic fore- 
casting routine of the  Japan Meteorological Agency in 
1960. This change increased the  total  computation  time 
by only about 20 percent  for  short-range  forecasts  and 
even less for longer integration times. 

b) By a 'correction-operator technique, showing Some 
similarity to Thompson's (1955) inverse-averaging pro- 
cedure, it is however possible to find a  fourth-order 
scheme where the Helmholz operator  is only a [)-point 
expression, which may be inverted  with the usual extra- 
polated Liebmann  method  without any  boundary value 
problems. The derivation of this  method  is described in 
section 3, and  the associated phase-speed error  for  a 
Rossby-wave solution is discussed in section 4 of this 
paper. It has been successfully tested for a  number of 
cases both  with  a simple channel-flow model and the 24-hr 
and 48-hr barotropic  forecast  routine of the Swedish 
Meterological and Hydrological Institute. Some of these 
integrations were extended to 72-hr and 96-hr forecast 
time. The average  reduction of the root-mean-square 
error  in 24-hr forecasts was about 10 percent. In  the 48-hr 
forecast, the improvement was less than  this  value  and it 
even failed to  appear  in  the 72-hr forecasts. The reason 
for  this was found to be  the inability of the  barotropic 
scheme to predict the motion of planetary-scale  systems, 
causing an erroneous retrogression of the waves. This 
retrogression is partly reduced by  the influence of the 
semiempiric divergence parameter p, but also by  the 
phase-speed errors, which act  in  the same direction. With 
the new scheme, a  larger  optimum  value of p should 
therefore be  expected. This  value  depends upon the size 
of the  forecast region, the  length of the  forecast,  and  the 
desired accuracy for different scales of motion.  After  such 
a  modification, the correction-operator technique  is 
probably the  most efficient method of reducing the 
numerical errors of balanced forecast schemes. 

3. DERIVATION OF 
THE  CORRECTION-OPERATOR  SCHEME 

From  the  Taylor series expansions (6, 7), it follows that 

a.nd 

(where u is the  parameter  in  the  Jacobian (5)) if the func- 
tions +, a, and p have  derivatives of sufficiently high order. 
With  the aid of the relations 
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with where 
2(1--cos k As) sin k As  

7 6=- Y= (k As) k A s  
and 

are easily found to  be  true for a grid oriented in  the x- and 
(15) y-directions, and  the  phase speed is consequently 

it may  be shown that  the  equation 

gives an approximation to equation (I) with a total truncation 
error 0(At2)+O(As4), if the leap-frog method  is used For small k AS, this gives c = k z + o ( ( k  ~ ~ ) 4 ) ,  8,s 
for the  time differencing. A comparison with the k +a 
normal scheme based on 9-point operators shows that  the expected* 
only new features  are  the two correction operators The Rossby-wave phase speed was computed by this 
1--(1-u)- v(i) and 1-(1+u)- v & ,  the  factor 1-p- formula for the case a=O with A s = 3 0 0  km, u=18 m As2 As2  As2 

12  12 
" l2 sec-',  q=0.8.10-12m-2, and P=1.62.10-11m-' sec" (corre- 

in front Of the 'Perator, and the use Of 

Of *, f. For that scheme, One usuallY 
*,f instead sponding to 450 ]at.); see figure 1. The relative phase-speed * and '(i)lC. error  and the time  required for obtaining a phase  error of 

t o  be prescribed a t  the  boundary  points.  Here, 

for other choices of a. 

additional 1800 are also shown in figures and 3. For kAs<0.75, the 

of kAs ,  the error  is  always  negative  and  approximately 25 
given percent of the error of the conventional scheme. In this 

conditions must be imposed, One if Or and two is alu,ays  less than 1 percent, and for larger values 

If a # - l J  One may assume that '&* is 
at the boundary points, when computing the corrected wavelength range, u is much  larger than p/k2, and it may 

1 - (1 + u ) g ~  12 g)) (V (g) ~ + j ) .  then  be shown that a=O gives the smallest phase-speed 
error.  Although the Jacobian  with a= l  has  the  merit of 

scheme, no corresponding stability theorem has been 
found for the fourth-order  method. The value a=O was 
therefore used in  the experiments, and  the  results showed 

2, If a # the 
Of the right-hand side for points giving computational  stability  with the usual second-order next to the  boundary involves boundary-point  values of 

Since they Occur in a term by As2, Only an error 
Of Order is committed if they are taken to be no sign of instability provided the  initial field was 

ciently  smooth  and At was less than  about (1.5u)-lA8. 
(which is known at  the  boundary) as 

5. APPENDIX 
long as these values actually produce a  smooth  solution. With a sufficiently fine grid,  the  total  computation  time 
4. PHASE-SPEED ERRORS FOR THE NEW SCHEME r for a numerical integration of the barotropic vorticity 

equation is approximately  proportional to the number of 
A Of the of finite-difference time  steps (T/At) ,  the number of iterations used for 

equation ( l )  is the Phase- inverting the Laplace or Helmholz operator at  each  time 
speed error for a  Rossby-wavesolution $=-uY+# e ' step, and the number of grid points  in the horizontal 

scheme With 5- 0' 9-Point Laplace  and Jacobi operators  asymptotic  rate of convergence is of order ()(AS). The 

to the 
1 i k ( z - c t )  

The magnitude of the errors for  the usual second-order (S/As2).  For the extrapolated  Liebmann  method, the 

was discussed in  the  Introduction. By direct  insertion  number of iterations is consequently o(As-l), so that 
in (4) and  (5),  the  relations rr. =KlA~-3At".  v(i1 ,iXCz-cU ,-k2 Y e tk ( z -c l )  (17) For  the  AD1 method, the  rate of convergence is of order 
and (log S/As2)" and  thus 

J(s", (y, e i L ( z - c l ) ) = - i l c 6 e i k ( Z - C 1 )  (18) TADI K ~ A s - ~  log (&'/AS2) At-'. 
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1) For  the conventional scheme, the  total  truncation If this  is  in conflict with  the  stability  condition, choose 
error E is given by E=AAt2+B As2+higher order  terms; the largest possible -=x. At Then 
A/B>O. By  the method of Lagrange  multipliers, the As 
minimum  value of TL for a given E is found t o  be 

‘Lmtn = Klx-1(n2+n-2) (&x4+ B2+ C2x2) E-l (28) 

(TL)mtn = (g) 16A2K1E-2  
3 I2 

with For  the AD1 method, 

for sufficiently small E, provided that  the  value for 
At/As=(B/3A)’I2 is not  in conflict with the  stability condi- ( T ~ ~ ~ ) ~ ~ ~ = K ~ K ~ ~ ~ [ ( ~ ~ ~ ~ + ~ ~ ~ ’ ~ )  log S/Ad2 
tions. Otherwise, choose the largest possible At/As=x giving -n3/2 log n 2 ] ( $ ~ ( 2 B 2 $ Q ~ ~ o ~ 1 ) ) 3 1 4 ~ - 3 1 4  (30) 

giving 

TLmin =: (A+ B / x ~ ) ~ x ~ K ~ E - ~  
with 

E =: (Ax2+ B)   AS^. 
Similarly, 

with 
1 + $4 log S/As2 

E= l+log &‘/As2 

(23) 
with K~~~ approximately given by 

corresponding to (20,  21).  Formulae analogous to  (22,  23) 
are  obtained  in the same way. 

2 )  To obtain the same  formulae for the  Richardson 
extrapolation  method, the fourth-order  terms in  the 
expansion for E must  be considered: E=A1At2-A2AP+ 
BlAs2-B2As4-Q2At2As2+ higher order terms, with A2, B2, 
and C2 of the same sign. Assume  now 

At’  At” 
”” As!-Asf laK’  

Then TL=K~K-’(AS”~+AS’”~) 

and 

neglecting the higher order  terms. If As” is  a  multiple of 
As’, As”=n As’, 

and 
T L  L- Klr-1(n2+n-2) (A2rc4+B2+ C2~2)E-1  

E = n 2 ( A 2 ~ 4 + B 2 + C 2 ~ 2 ) A ~ ‘ 4 .  

The  optimal choice of K is 

3 )  For a scheme with  a  fourth-order  space  truncation 
error but only a second-order time-truncation  error 

E=AAt2+BAs4+higher order  terms, A/B>O, 

the optimal  time-step is At= - As2 if the  extrap- 

olated  Liebmann  method  is used. For sufficiently small 
As, this is not in conflict with  any  stability  condition of 

( 3 1 2  

the  type - <x. Then, At 
As - 

and 

(33) 
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